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Abstract

This article provides a comprehensive theoretical treatment of the coupled dynamic electromechanical behaviour of
interacting piezoceramic actuators embedded in an elastic medium under inplane electrical load. The actuators are
characterized by an electroelastic line model with the poling direction being perpendicular to its length. The theoretical
formulations, governing this coupled system, are based upon the use of integral equations and a new pseudo-incident
wave method. A new shear stress singularity factor (SSSF) at the tip of the actuator is obtained by solving these integral
equations using Chebyshev polynomial expansions. Typical examples are provided to show the effect of the geometry of
the actuator, the material combination and the loading frequency upon the SSSF. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

With the emergence of new piezoceramic materials, the concept of using a network of piezoelectric
actuators and sensors to form a self controlling and self monitoring smart system in advanced structural
design has drawn considerable interest among the research community (Gandhi and Thompson, 1992;
Disch et al., 1995; Varadan et al., 1993). One of the most fundamental issues surrounding the use of in-
tegrated actuators in smart material/structure systems is to determine the actuation effect being transferred
from the actuators to the host structure and the resulting overall response. Another important aspect re-
lated to the design of any integrated smart system is the determination of interfacial stresses that may result
in degrading the mechanical integrity of the structure. An accurate assessment of the coupled electrome-
chanical behaviour of an integrated structure would require the determination of the local stress distri-
bution in smart structures involving piezoelectric actuators/inhomogeneities.
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The subject of piezoelectric actuator/inhomogeneity has received attention from the scientific commu-
nity. For example, Deeg (1980) and Benveniste (1992) conducted research on the single elliptical (ellip-
soidal) inhomogeneity in unbounded piezoelectric materials using Green’s function approach; Dunn and
Taya (1993) focused on the determination of the effective properties of piezoelectric composites using
different micromechanical models; and the work of Pak (1990), Sosa (1991), Suo et al. (1992), Jain and
Sirkis (1994) and He et al. (1994) on fracture and damage analysis of piezoceramics. However, relatively few
studies have focused on the local stress field around piezoelectric actuators. Crawley and de Luis (1987) first
analysed a beam-like structure with surface bonded and embedded thin sheet piezoelectric actuators to
study the stresses transferred by the actuator to the host beam. In that analysis, the axial stress in the
actuator was assumed to be uniform across its thickness and the host structure was treated as a Bernoulli—
Euler beam. The result indicated that for a perfectly bonded actuator, the shear stress between the actuator
and the host beam was transferred over an infinitesimal distance near the ends of the actuator. Crawley and
Anderson (1990) further developed a Bernoulli-Euler model of a piezoelectric actuator by considering the
linear stress distribution along its thickness.

Im and Atluri (1989) modified the actuator model presented by Crawley and de Luis (1987) to investigate
a beam with a piezoelectric actuator under general loading. Both the axial and the transverse shear forces in
the beam were considered in formulating the governing equations. A refined actuator model based on the
plane stress condition was presented for a beam structure with symmetrically surface-bonded actuator
patches (Lin and Rogers, 1993a,b), which showed good agreement with the finite element results.

The objective of the present paper is to provide an analytical analysis of the coupled dynamic electro-
mechanical behaviour of interacting piezoceramic actuators embedded in an elastic medium under inplane
mechanical and electrical loads. Since the main interest of the current study is the local stress concentration
and the load transfer near the actuator, the host structure is assumed to be infinite.

The single actuator problem was solved using one-dimensional actuator model and solving the resulting
integral equations in terms of the interfacial shear stress. The single actuator solution was further imple-
mented into a new pseudo-incident wave method to account for the dynamic interaction between actuators.
Specifically, two aspects of the work were examined. The first was concerned with determining the effect of
the geometry, the material mismatch and the loading frequency upon the resulting shear stress singularity
factor (SSSF), while the second was concerned with the effect of the interaction between actuators upon the
local stress field around the actuators.

2. Formulation of the problem
2.1. General description

Let us consider a two-dimensional linear elastic solid with multiple parallel piezoelectric actuators 4,
(n = 1, N,) under plane strain condition, as shown in Fig. 1. The matrix is assumed to be an insulator and
perfectly bonded to the actuators. Each actuator 4, is subjected to an applied electric field (E,) of frequency
o across its thickness. The position of the centre of actuator 4, is described by its coordinates (3?,2), and
its half length and the thickness are denoted as a, and #4,, respectively. A local coordinate system ( y,, z,) will
be used to describe actuator 4, with its origin at the centre of 4,.

The displacement, strain, stress and electric fields corresponding to a steady state solution under a
dynamic load of frequency w can be expressed in terms of the frequency w as

A'(y,z,t) = A(y,z)e ™, (1)
where A" represents the desired field variable. For the sake of convenience, the time factor exp(—iwt) will be
suppressed and only 4(x,y) will be considered. It is further assumed that the system considered is under
plane strain deformation, which corresponds to the case where the structure is relatively large in size in the
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Fig. 1. A composite structure with embedded actuators.

direction perpendicular to the working plane. It should be mentioned that the current method and solution
could also be applied to plane stress cases by the appropriate substitution of the material constants.

As in most of the thin sheet piezoelectric actuator applications, it is assumed that the poling direction of
a piezoelectric actuator is perpendicular to its length and that the two electrodes are attached to the upper
and the lower surfaces of the actuator, respectively. The electric field is induced by applying a voltage (V)
across the upper and lower electrodes, which can be determined using £, = (V,” — V") /h,.

For thin actuators, the applied electric field will mainly result in an axial deformation, and the following
assumptions can be made:

(1) o} and u; are uniform across the thickness of the actuator,

(2) the interfacial shear stress (t) transferred between the actuator and the host can be replaced by a dis-
tributed body force along the actuator, and

(3) o2 and ¢}, in the actuator can be ignored.

Based upon these assumptions, the actuator can be modelled as an electroelastic line subjected to the
applied electric field and distributed axial force, t/A, as shown in Fig. 2. The equilibrium equation of the
actuator can then be expressed as

a

_ 2.4 — 2
3 0/ p0tu =0, 2)

where p, is the mass density of the actuator. The relation between the stress, the strain and the electric fields
of this actuator model can be obtained by using the following general constitutive relation:

T

 —— — —— — —

host structure

T o, T G-y+d0'y
L > — —F ——> 1 < —r —p» —Pp —P| »
dy

(@ (b)

Fig. 2. Actuator model.
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0y = Ey€, — e E, (3)

where €, = Ouj /0y is the axial strain of the actuator and E, and e, are effective material constants given in
Appendix A.

The elastodynamic behaviour of the homogeneous isotropic matrix under steady state plane strain de-
formation is governed by the following equations (Achenbach, 1973),

(V> + K%)= 0, (V2+ )P =0 (4)
in which the Laplacian operator V? stands for (8°/dy?) + (0>/0z?), @ and ¥ are two displacement potentials
and K and k are two wave numbers defined as

I(:CO/CL7 k:(,l)/CT (5)

with ¢p and ¢t being the longitudinal and transverse shear wave velocities of the elastic medium, respec-
tively. The non-vanishing displacement components are

_a_@_|_a_lp _6_(15_@_']/ (6)
0y oz’ T % oy

uy

The corresponding strain and stress components are

e,*% 6:6142 . 1<6uz+%> )

Yooyt 7 Az ) dy 0Oz
and
oy =n| — Ko -282+222],
azzu{—k2d5—2§7’f—22i;}, (8)
0. = u[222 - Rw —222],

where p is the shear modulus of the elastic medium.

3. Analysis of a single piezoelectric actuator

Let us now consider the plane strain problem of a thin piezoceramic actuator sheet embedded in a
homogeneous and isotropic elastic medium. The half length and the thickness of the actuator are denoted
as a and A, respectively, as shown in Fig. 3. It is assumed that the poling direction of the actuator is along
the z-axis.

Z
T actuator
® p A ho Y
' 2a
/ host structure
I

Fig. 3. An embedded actuator.
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3.1. Displacement of the actuator

Eq. (2) can be formulated, using Eq. (3), in terms of the axial displacement of the actuator as follows:

2. a
E, dyz“" +F(y)/h+ p,0’u =0, ©)
where
dE.
F() = 7(0) — he, ) (10)
Ly

is the applied electromechanical load with 7 being the interfacial shear stress along the actuator, as shown in
Fig. 2. Since all the load transfer between the actuator and the host can be attributed to 7, the two ends of
the actuator can be assumed to be traction free, i.e.

=0, hl=a (11)

By solving the second order differential equation (9), and making use of the boundary conditions given by
Eq. (11), the axial displacement of the actuator for a general applied 7 can be obtained as

ka “ r 4
20) = 1i03) — oD [ cosi (e - ape(@pa + [ sink(e - ) ok de (12)
where
ka=w/c,, and ¢, =+/E,/p, (13)

are the wave number and the axial wave speed of the actuator, respectively. The axial displacement induced
by a uniformly applied electric field, E., is given by

E.e, sink,
fe(y) = Y

" E,k, coskya’

(14)

3.2. Displacement field in the matrix

The dynamic displacement and stress fields in the elastic matrix can be decomposed into two parts:
incident and outgoing ones, as shown in Fig. 4. The total stress and displacement fields in the matrix
11

(a,.Tj,ujT) can then be expressed as the superposition of the incident wave (g;;,u;) and the induced wave

(O-ij) uj>, i.e.,
oy =0yt oy, U =t (15)
with the superscripts “T” and ‘I’ representing the total field and the incident field, respectively.

The outgoing wave can be determined by solving the governing equations given by Eq. (4) using the
following Fourier transform:

1 [~ is ~ is
F6 = [ S0 s0)= [ e s (16)
as

{ O (s,2) =AT(s)e™™, Wi(s,z) =BT (s)e” z>0, (17)

z
Q" (s,z) = A (s)e*, W' (s,z) =B (s)ef* z<0,
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(A) (B)

Fig. 4. Decomposition of the problem.

where (") represents Fourier transform. 47 (s), B (s), 4~ (s) and B~ (s) are four unknown functions of s with
o and f being given by

oy Vs — K2, Is| > K, B = §2 — k2, Is| > &, (18)
—ivVK? —s%, 5| <K, —ivk? =52 |s| <k,

which ensure that the stress field induced by the outgoing wave satisfies the boundary conditions of the
problem at infinity.

According to the solution given by Eq. (17), the following displacement and stress expressions can be
obtained by using Egs. (6) and (8):

—isA*(s)e ™ — BBT(s)e™#, z>0,

= { —isA~(s)e* + BB~ (s)e’, z <0, (19)
o — 2isad ™ (s)e™% + (25 — k*)B*t (s)e z>0, (20)
= = M “2isod (s)e = + (252 — k2B (s)e 2, z <.

According to the present actuator model, the displacement field of the induced wave should be continuous
at the site of the actuator. Therefore, the Fourier transform of this displacement should satisfy the fol-
lowing conditions:

uy(s,07) = u;(s,07). (21)
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The shear stress of the outgoing wave at the upper and the lower surfaces of the actuator are discontinuous.
The mismatch stress can be expressed in the Fourier transform domain as

T =0,(5,0") —a.(s,07). (22)

By making use of Eqgs. (21) and (22), the unknown functions A", 4=, B™ and B~ can be obtained in terms of
7%, such that

{A+ =4 = aeiTl) (23)

B =B = —517(s).

By substituting Eq. (23) into Eq. (19) and making use of inverse Fourier transform, the displacement at
z =0 can be expressed in terms of t* as

w00 =5 [ (5= )eeas (29

Since the shear stress a,, is continuous in |y| > a, z = 0, according to Eq. (22), the mismatch shear stress
0,:(»,07) — 0,,(y,07) must be zero at |y| > a. For |y| < a, however, the mismatch shear stress equals the
interfacial shear stress 7 used in Eq. (10). Accordingly, t* can be expressed in terms of 7 as

) =5 [ ot 2s)
The displacement at z = 0 can then be expressed, by substituting Eq. (25) into Eq. (24), as
w0 =5 [ @l - 9d (26)
where
m=9 =g [ [5-% cosbtc —jas (27)

3.3. Continuity conditions and integral equations
The continuity condition between the actuator and the matrix can be described, using Eq. (15), as being
: I
uy, =u, +u, (28)

with the superscripts ‘a’ and ‘I’ representing the actuator and the incident wave, respectively. By substi-
tuting Egs. (26) and (12) into Egs. (28), the following integral equation can be obtained for t:

1 a cosk,(a+y) [ 7(¢) T ()
o _ar(é)nl(y — &d¢ +7ka T /_a cosk,(&—a) IE, du — /_a sink, (& —y) T dé¢

=fey) —u,, Dl<a, (29)
where u! is the displacement of the incident field, which represents the applied mechanical load, and f is the

electrical load given by Eq. (14).
Eq. (29) can be normalised as
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%_)k [ 5 [ (55 ) costto— aasac + S [ ot e

2(1—v 1 sin(2k,)

U _ Eok, E, .
— q[l sink, ({ — n)T()d{ = Ef,;(y) T b u, [nl <1

The normalised parameters in these equations are defined by

T(n) =(an)/p,  ¢,(0) = d,lan),  n=y/a,

K =Ka, k=ka, k,=ka,

Tua e, E,

=0 Wern PTU-WE"

3.4. Solution of the problem

Eq. (30) involves a square-root singularity of 7 at the ends of the actuators. Therefore, the general so-

lution of T can be expressed in terms of Chebyshev polynomials, such that
=>_eTm/vV1-.
=0

By substituting Eq. (34) into Eq. (30) and making use of the following relations:
I 5 .o _ 0, j=2n,
S g O sin(Odl = { (C)'mE), =2+,
1 1 4 _ |0, j=2n+1,
S A T cos(sl)dl = { (~)'m(s). =2n,

the following algebraic equations for determining c; can be obtained,

ka 2
Tciz Z c; le (3,1m) (ﬁ - —) ds — gv Z ¢; sin[k, (cos 0 — )] cos(j0)d0 + qv

cos~ly

E.k, Ek
—_— P = a a <1,
sin(2) 251 eaEZfE( n — A u,(an), |nl

)" cos(sn), Jj=2n,
1)"sin(sn), j=2n+1,

n

P (s.) = (){E
)

2 T ( (3)7 _2n+17
P =Jitk, ){(—1) sgi(k ) j-:zn

with J; (j=1,2,...) being Bessel functions of the first kind.

(34)

If the expansions in Eq. (34) are truncated to the (N — 1)th term and Eq. (36) is satisfied at the following

collocation points along the length of the actuator

l_ _— =
n' = cos [Nln]’ I=1,2,...,N,

N linear algebraic equations in terms of {c} = {cy,c1,¢s,. .., cN,l}T can be obtained, such that

(38)



X.D. Wang, S.A. Meguid | International Journal of Solids and Structures 38 (2001) 2803-2820 2811

[l{c} = {F}, (39)
where [4] is a known matrix given in Appendix B and {F} is the applied load with
_ Eqk, N Eika 1, _
By = 2 felan') = St an), 1= 120, (40)

From these equations, the unknown coefficients in {c} can be determined.
The outgoing wave in the matrix medium is governed by interfacial stress 7. By making use of Egs. (6),
(17) and (23), the outgoing displacement field in the matrix can be obtained in terms of 7 as

uf = s [y =5 e 7 + pe ] [, 1(8) cos[s(¢ — y)]deds, an
Uy =5 7[5 e + Bl [, 7(&) cos[s(& — y)ldEds,

ut = 2;7 fooc[—s(e"” — e 7)) ffa 7(&) cos[s(& — y)|d&ds, (42)
u; =g Jo ls(e —eP)] [, o(&) cos[s(& — y)]dEds.

4. Analysis of interacting actuators

The existence of multiple actuators in a smart structure subjected to dynamic loading results in com-
plicated reflection of elastic waves between actuators. The analysis of such a complex problem can be
simplified by using the previously developed single actuator solution as a building block and considering
the consistency relation between different actuators. In the following discussion, u = (u,,u.) will be used to
describe the displacement field in the matrix.

4.1. Pseudo-incident wave method

Let us now focus our attention on a specific actuator 4, subjected to an electric field E, across its
thickness and an incident mechanical wave u!. u! includes not only the original mechanical incident wave u’
but also the mechanical wave from other actuators, which is regarded as an unknown pseudo-incident wave
u?, as shown in Fig. 5. Therefore, actuator 4, is subjected to an applied electric field £, and an incident
wave given by

u =u’ +ul. (43)

Fig. 5. Pseudo-incident waves of different actuators.
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According to the single actuator solution discussed in the previous section, the applied electric field E,
and the incident wave given by Eq. (43) will result in an induced wave u®™ in the matrix, which is given by
Egs. (41) and (42). As a result, the total displacement field in the matrix can be obtained by superimposing
the incident wave and the outgoing wave as

total __ T out _ 0 P out
Ot = +ut =u’ +ul +udt (44)

The total displacement field in the matrix can also be obtained by summing up the initial incident field and
the contribution (outgoing waves) from all actuators to give

Na
utotal — u() + Z llﬁm. (45)
n=1
Comparison between Egs. (44) and (45) indicates that
Na
D =uf (46)
j=1

Therefore, the pseudo-incident wave of actuator n can be expressed in terms of the outgoing waves of other
actuators as

Na
uw = Zuj’n‘“. (47)
m#n

Eq. (47) represents the consistency condition between different actuators. This equation will be used to
solve interaction problems from single actuator solutions.

According to the single actuator solution, the outgoing wave of any actuator is governed by its inter-
facial shear stress, as shown in Egs. (41) and (42). By substituting Eq. (34) into Eq. (41), the outgoing wave
of actuator 4, used in Eq. (47) can be expressed in terms of the coefficients of Chebyshev polynomial
expansions of actuator 4,,, {c}", as

”;’:l()’nz,zm) = [Rm(ymaZM)]{c}m’ (48)
where
Rz = { e 220 (49)
with
[ o] [ ITQ) )
5002)) = 5 /0 e o fe [ e cosbl€ ~ y/an)dcds, (50)
(T(0)] = [T (0), T(0), - - -, Tn(D)] (51)

with 7;({) being Chebyshev polynomials of the first kind and {c}" = {¢}", %, ..., c]’(}}T being the coefficients
of Chebyshev polynomial expansion given by Eq. (34).
Accordingly, the pseudo-incident wave along actuator 4, can be obtained by substituting Eq. (48) into
Eq. (47) as
. _ eE, n
wy, 0, 0) = =2 > 10n(){e}", (52)

m#n

where
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Ei?

[0n(v)] = 7e:—En[Rm(yn ern ym’Z 720 )] (53)

The total incident wave of actuator 4, can then be determined by substituting Eq. (52) into Eq. (43) as

”)I;,,( 0, 0) = E”kd {QO V) + Z On () {c}"}, (54)
m#n
where
E"k?
QO( n) = _e:—E”B,, (yn) (55)

with u‘y) (y,) being the displacement along the site of actuator 4, due to the initial incident wave u°.

4.2. Solution of interacting actuators

According to the previously discussed single actuator solution, the Chebyshev polynomial expansion

coefficients of actuator 4,, {c}" = {¢/,c%,...,¢}}", can be determined using Eq. (39) as
[A]{c}" = {F}". (56)
[4]" is a known matrix given in Appendix B, and {F}" can be expressed, using Eq. (40), as
{FY ={r 4 +{n" (57)
in which
I ;:1"1
n 2 n 12
=370 s ={ (58)
Iy Siv

are the general loads at the following collocation points,

SRS/ G—Dm .
=y == =1,2,...,N 59
r’;: ’f/ a, = COS N . 1 ) J Pl ) 9 ( )
where
. cosk. . BN
f}' sm %n ) ](U - e”E,, uyn (yn’ 0) (60)

with u; being the displacement field of the incident wave of actuator 4,,, which is given by Eq. (54).
The general force {f;}" used in Eq. (56) can then be obtained using Egs. (54) and (58) as

" =10 + [0.]'{C}, (61)
where
Qo) e},
s e}
or=12" g2l (62)
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and
sl
0] = 1:)’,, 2 Ny W . (63)
016 Q0] - [0 0]

By substituting Eqs. (59) and (49) into Eq. (48), the governing equation for solving {C} can be obtained as
follows:

0.]' {ry + {00}

[ 00 2 2 2
8 42 - 8 B [Q{ (cy— {1} +.{Qo} (64)
0 0 0 WhL gy e+ oy

Eq. (64) indicates that the final result of the original interaction problem can be obtained by solving these
linear equations, which can be obtained directly from the analytical solution of the single actuator.

To evaluate the singular behaviour of the interfacial shear stress at the tips of an actuator, we introduce a
new parameter: the SSSF, S, defined as

S, = lim[\/2n(a — y)t(y)]

Si= lim [v/2n(a +)()]. (65)

Using Eq. (34), the SSSF at the left and right tips of the actuator can be expressed in terms of the cor-
responding coefficients of Chebyshev polynomial expansion, c;, as

N—-1 N—-1
S; = pyvan Z(—l)’cj, S, zp\/anz ¢ (66)
Jj=0 J=0
which can be expressed in a normalised form as
N-1 ) N-1
Sy =S/pvra=Y (-1Ye¢;,  S;=S/pVra=> ¢ (67)
=0 =0

The SSSF represents the local stress concentration at the tips of the actuator, which has significant effects
upon the debonding characteristics of the actuator. The SSSF also governs the load transfer from the
actuator to the host structure; a higher SSSF would typically indicate an effective load transfer and control
of that structure. However, high values of SSSF may result in interfacial debonding, leading to a reduction
in the effective length of the actuator. Thus, there is a trade off between the effectiveness of the actuator and
the prevention of failure of the actuator/adaptive structure.

5. Numerical examples

Numerical calculations were carried out for typical examples to investigate the effect of frequency and
material constants upon the dynamic behaviour of the actuator.
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5.1. Validation of the actuator model

To verify the validity of the present simplified actuator model to predict the interfacial stress distribu-
tion, both the current method and the commercial finite element code ANSYS were used to analyse the
static shear stress distribution along the boundary of a PZT actuator under an applied electric load. The
material constants of the actuator were assumed to be

en =139 10" N/m%,  ¢p=678x 10" N/m?, ¢35 =743 x 10" N/m?,
e =115 % 10 N/m%,  cu = 2.56 x 10" N/m?,

e =—52C/m% ey =151C/m%,  e5s=127C/m’,

61 =645x107° C/Vm,  &3=562x107° C/Vm.

The matrix is assumed to be an isotropic insulator with
E=170x10° N/m?*, v=033.

To simulate the case where the matrix is infinite, a piezoelectric actuator with ¢ = 10 mm and #/2 = 1 mm
(2 mm) embedded in a matrix of 100 mm x 100 mm was considered. The finite element mesh near the
actuator for the case where # = 1 mm was shown in Fig. 6. Because of the symmetry of the problem, only
the right-upper quarter of the structure was considered.

According to the developed actuator model, the effective elastic parameters can be determined to be
¢ =5.107. The interfacial stress distribution from both models are depicted and compared in Fig. 7. These
two solutions show fairly good agreement when y/a < 0.9 for v = a/h = 10. It should be mentioned that in
most cases, a/h will be greater than 10. The discrepancy between these two solutions near the tip of the
actuator is due to the complex two-dimensional stress distribution in the actuator, which could not be
accurately described by the current one-dimensional model. It should be mentioned that by using the
current actuator model, all the loads transferred from the actuator to the matrix, including the axial stress
at the ends of the actuator, have been represented by the interfacial shear stress, which is singular when the
ends of the actuator are approached.

h/2 x

\ 4

a

Fig. 6. Finite element mesh used near the actuator.
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Fig. 7. Shear stress distribution determined by the current model and the finite element method.

5.2. Effect of frequency upon SSSF

Consider the case of an embedded actuator subjected to an applied electric field E? of frequency w. Fig. 8

shows the variation of normalised SSSF S* = S/p/ma with the normalised frequency k« for the case where
p,/py = 1, v = 10. The figure shows the existence of dynamic overshoot, i.e. the dynamic SSSF attains a

maximum value which exceeds that corresponding to the static case at a given frequency. This has been
found in elastodynamic crack problems (Wang and Meguid, 1997). The result also shows the dramatic
effect of the material combination ¢ = wu/(1 — v)E, upon S*. Similar to the quasistatic behaviour, in most

cases, a lower value of ¢ will result in a higher S* at the end of the actuator.
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Fig. 8. Dynamic SSSF of an embedded actuator.
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Fig. 9. Dynamic SSSF due to collinear embedded actuators.

5.3. Dynamic interaction between collinear embedded actuators

Fig. 9 shows the variation of the normalised SSSF S* = §/p+/ma at the inner tips of two collinear em-
bedded actuators of equal length and thickness for the case where ¢ = 0.157 ((1 —v)E,/2u = 10),
v=a/h=10and p,/py = 1. In this figure, p is given by Eq. (33), a and / are the length and the thickness of
the actuators and e is the distance between the interacting tips of the actuators. The two actuators are
subjected to the same applied electric field E.. For the case where the distance between the actuators are
larger than «, the interaction between the actuators can be ignored for all the frequencies considered.
However, when the actuators are closer, e < 0.5a for example, the interaction between the actuators may
result in a significant increase in S*. It should be noted that it is a common practice to place different
actuators in close proximity to achieve high displacement at a specific point of the structure (Ha et al.,
1992).

5.4. Dynamic interaction between parallel embedded actuators

Fig. 10 shows the dynamic S* of two parallel actuators of equal length subjected to the same electric field
E. of frequency w for the case where ¢ = 0.157, v = 10 and p,/py = 1. Unlike the collinear case, the in-
teraction between parallel actuators reduces the stress singularity at the ends of the actuators for low
frequencies (ka < 1). However, for high frequencies (ka > 1), the interaction between the actuators am-
plifies the local stress concentration.

6. Concluding remarks

A general analytical solution is provided to the coupled dynamic electromechanical behaviour of in-
teracting piezoelectric actuators embedded in an elestic medium under plane mechanical and electrical
loads. The analysis is based upon the use of a piezoelectric line model of the actuator which reduces the
problem to the solution of integral equations in terms of the shear stresses between the actuators and the
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Fig. 10. Dynamic SSSF due to parallel embedded actuators.

matrix. The interaction between different actuators was treated using a pseudo-incident wave method which
provides an accurate and reliable solution of the problem by using the single actuator solution as a building
block for the interaction model. The newly defined SSSF provides a description of the local stress field
around the tip of the actuator. The effect of the shape of the actuators, the material combination and the
electromechanical coupling upon the resulting SSSF of the actuators are examined and discussed.
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Appendix A. Effective material constants

The mechanical and electrical properties of piezoceramic materials can be described fully by
the equation of motion

0jij + fi = pili,
Di,i = 07

Gauss’ law
the constitutive equations

{o} =[cl{e} —[el{E},  {D} = [el{e} + [¢{E},
where €; = (u;; + u;;), E =-V,.

In these equations, {o} and {e} are the stress and the strain fields, f; and p are the body force and mass
density, while {D}, {E} and V represent the electric displacement, the electric field intensity and the po-
tential, respectively. [c] is a matrix containing the elastic stiffness parameters for a constant electric po-
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tential, [e] represents a tensor containing the piezoelectric constants and [e] represents the dielectric con-
stants for zero strains.
According to the electroelastic line actuator model, the effective material constants of the actuator model
are given by
2

c .
E,=c;; — 2  plane strain,
33
C13 .
e, = e;3 —e3—  plane strain,
33
62
&, = €33 + 0—33 plane strain,
33

where the direction of polarization is designated as being the z-axis.

Appendix B. Single actuator solution

The matrices used in Eq. (39) for solving single embedded actuator problem are given by

7 [eS] <2 m
Ay = T ]_{_; /0 P/(s,1") (E - %)dﬁ - qv/ sinfk, (cos 0 — n')] cos(j0)d0 + nqv

2(1 — V) k os~ 1yl
T (ol

y cos[ka(i?_+ 1)]P?.
sin 2k,

The corresponding matrix used in Eq. (48) is given by

hn

k 0 — 52 T . N
4}, = T A /0 le 31" <ﬁn - ;)dE - q,,vn/ sinfk, (cos 0 — n')] cos(j0)d0 + ng,v,

2(1 — V) %2 os~1n!
—_—

" cos[k.a(n_j— 1)]P,2,
sin 2k, /

where le and sz are given by Eq. (37) and 5’ are the collocation points along the actuators given by Eq.
(38).
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